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ABSTRACT 

Background: Alzheimer's disease is a prevalent neurological condition that leads to 

dementia. The illness advances slowly through the destruction of neurons. Though loss of 

memory characterizes the disease, interestingly, recent reports also suggest motor 

coordination can influence or be affected by the disease. Ketamine is a common anesthetic 

medicine but its effect on nervous system is debatable. Most of the studies over ketamine’s 

effect on cognitive function were conducted with administration of high dose, whereas its 

potential at low dose remained undiscovered. Thus, the present study was aimed to assess 

the effect of low dose of ketamine as sole administration and in a combination with 

antioxidant on cognition and motor coordination in a mouse model of Alzheimer's disease.  

Methods: Mice were given scopolamine for seven days to elicit Alzheimer-like symptoms 

such as loss of memory and motor coordination. Afterwards, they either received 

intraperitoneal dose of 5, 10, 20 mg/kg of ketamine only or along with an antioxidant (a 

complex of Betacarotene, vitamin-C, and vitamin-E) for cognitive and motor function test. 

The cognitive behavior was assessed using the Y maze test, modified hole cross test, and 

Morris water maze test, and motor coordination was evaluated using the rotatod and pole 

test.    

Results: The study revealed that ketamine at 20 mg/kg body weight interferes with 

cognition and impairs motor coordination in Alzheimer's mouse model. Ketamine 10 mg/kg 

in combination with the antioxidant resulted in significant cognitive improvement however, 

exhibited marginal improvement in motor coordination.  Though previously reported by 

other studies, antioxidant as a positive control could not produce significant effect on motor 

coordination as observed in this study. 

Conclusion:  More research at the cellular and molecular level is required to understand the 

mechanism behind conservation of cognitive function. Moreover, the synergistic potential of 

the combination (antioxidants and ketamine) in ameliorating cognitive effects is to be 

explored. 
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INTRODUCTION 

Alzheimer’s disease (AD) is a common neurological disease 

which is characterized by memory loss and motor 

coordination loss. The disease progresses slowly by 

damaging of brain cells. There are around 50 Million 

Alzheimer’s patients in the world which estimated to be 

tripled by 2050 [1]. Patients with AD mostly suffer by losing 

memory progressively, problem in doing daily life activities, 

sometimes problem with language or making sentences as 

well as loss of perception and motor function [2]. In terms of 

economic burden, total cost for care giver management, 

physician, medicine to other direct and indirect related cost 

is estimated around 1 trillion dollar worldwide [3].  In 

general, two proteins - amyloid-beta and tau buildup are 

linked to the progressive cognitive deterioration in AD [4]. 

Beta-secretase and gamma-secretase sequentially cleave the 

amyloid precursor protein (APP), resulting in the formation 

of amyloid-beta peptide. Thus, the aggregation of amyloid-

beta peptide produces hazardous oligomers for the neurons 

[5]. Tau, however, forms when the microtubule-associated 

protein tau’s regulatory gene is alternatively spliced to 

create soluble protein isoforms [6]. A number of functional 

interactions between Aβ and tau protein have been linked to 

cognitive impairment and neuronal circuit destruction in AD 

[7,8]. Aging, infection, injury of brain, some genetic factors 

such as mutation of PSEN1, APP and PSEN2 genes, obesity, 

accumulation of heavy metals in brain and vascular disease 

are the most common risk factors for Alzheimer’s disease [9–

12]. Moreover, interestingly, some studies reported that 

people with slower movement and poor balance are more 

likely to diagnose with AD in their following 6 year of age 

[13], while others confirmed motor failure at late stages of 

AD [14]. Therefore, the study hypothesized the possibilities 

of concurrence of both motor and memory impairment in 

pathologic condition of AD. Till date, there is no cure for this 

disease, however, some treatment options are there to slow 

down the disease [15].  

Investigating the potential of some natural compounds with 

neuroprotective properties is one of the most recent 

approach for treating AD [16]. Currently, major two groups 

of drugs are approved to treat the disease, cholinesterase 

inhibitors which decrease the metabolism of acetyl choline 

resulting increase in acetyl choline and antagonists of NMDA 

(N-methyl D-aspertate) as NMDA over excitation causes 

neuronal death and various malfunction [16]. Additionally, 

antioxidant drugs are also prescribed for treating 

Alzheimer’s patient as oxidative stress causes formation of 

many of the toxic compounds which might  create the risk of 

Alzheimer’s disease [17].  

Ketamine has been a therapeutic choice to induce anesthesia. 

Recent studies indicate its potential as an antidepressant 

medicine [18]. Ketamine exerts its antidepressant effect via 

an increase in synaptic glutamate concentration [19]. 

Nonetheless, ketamine causes cognitive dysfunction and 

neuronal death at 30mg/kg or higher concentration in mice 

by reducing brain-derived neurotrophic factor (BDNF) 

drastically [20,21]. Despite such negative effect on cognitive 

function, interestingly ketamine is also an antagonist of 

NMDA receptor which leads to a hypothesis over utilizing it 

as an anti-Alzheimer’s disease medicine [22]. Furthermore, 

at low doses, ketamine has antioxidant activity, resulting in 

neuroprotective effects [23]. Thus, this study attempts to 

determine if motor failure also features Alzheimer’s disease 

alongside the characteristics of memory loss and if lower 

dose of ketamine, such as 5, 10, and 20 mg/kg, alone or in 

combination with antioxidant can enhance these 

performances in a mouse model of Alzheimer's disease.  

METHODS 

Drugs and Chemicals 

Commercially viable IV dosage of ketamine (50mg/ml) were 

procured from Popular Pharmaceuticals Ltd. (Bangladesh). 

In addition, antioxidant medication was bought from Square 

Pharmaceuticals Ltd. (Bangladesh) in tablet form, which 

comprises betacarotene, vitamin-C, and vitamin-E doses at 6, 

200, and 50mg per tablet, respectively. From Opsonin 

Pharmaceuticals Ltd., 0.9% NaCl solution was purchased 

(Bangladesh). 

Experimental Animal 

For the studies, Swiss albino mice aged 45 days and weighing 

25 to 30 grams were used. The animals were subjected to a 

12h light/dark cycle, adequate air ventilation, and ambient 

temperature. The animals were housed in the animal home 

at the Institute for Pharmaceutical Skill Development and 

Research, Bangladesh, where they were given adequate 

water and food access. 

Experimental Design 

For the duration of the study, we separated mice into nine 

groups, each containing five.  Except blank group, all mice 

were given scopolamine 1mg/kg orally, treated for 7 days to 

induce Alzheimer’s like behavior such as memory  and  

motor impairment according Yadang et al. study in 2020 

[24]. These groups were further subjected to the following 

treatments: 

Group 1: Blank or completely healthy mice (saline water, 

i.p.), Group 2: Control or Alzheimer's mice (saline water, i.p.), 

Group 3: Antioxidant complex (betacarotene 1.2 mg/kg + 

vitamin-C 41 mg/kg + vitamin-E 10.3 mg/kg, p.o.), Group 4: 

Ketamine (5 mg/kg, i.p.), Group 5: Ketamine (10 mg/kg, i.p.), 

Group 6: Ketamine (20 mg/kg, i.p.), Group 7: Antioxidant 

complex (p.o.) + Ketamine (5 mg/kg, i.p.), Group 8: 

Antioxidant complex (p.o.) + Ketamine (10 mg/kg i.p.), 
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Group 9: Antioxidant complex (p.o.) + Ketamine (20 mg/kg 

i.p.). I.p doses were given 30 minutes before the experiment 

and oral doses were given 1 hour before the experiment for 

all the studies conducted. 

To evaluate cognitive function three tests were done, Y maze 

recognition memory test for short term memory assessment, 

modified hole cross test for spatial memory based on reward 

assessment and Morris water maze for spatial and working 

memory assessment. Moreover, to access Motor 

coordination rotatod and pole tests were conducted.  

Y Maze Test 

Y-maze was constructed of wood, wrapped in white sheets 

with various black patterns painted on top to provide visual 

cues, and had three arms with a 120° angle between each 

pair of arms. Each arm measured 8 x 30 x 15 centimeters 

(width x length x height). The arms were designated (i) start 

arm, where the mouse began exploring (always open), (ii) 

novel arm, which was restricted during the first trial but 

allowed access during the second trial, and (iii) the familiar 

arm was open for the entire period. In order to limit olfactory 

cues, the floor of the maze was coated with sawdust. To 

measure spatial recognition memory, the Y-maze test 

included two trials divided by an inter-trial interval (ITI). 

The first trial [training] lasted 10 minutes and enabled the 

mouse to explore only two arms of the maze (start arm and 

other arm), while the third arm (new arm) was blocked. After 

1h of ITI, the second trial (retention) was done, in which the 

mouse was transferred back into the maze in the same 

beginning arm, with exposure to all three arms for 5 minutes. 

After the second trial, the relation between novelty and 

familiarity was calculated by comparing the time spend in all 

of the arms [25]. 

Modified Hole Cross Test  

Mice were placed in a hole cross apparatus and permitted to 

freely traverse a 3 cm hole in a 7 cm-high barrier that splits 

the 30x20x14 cm box into two equal compartments. After 

crossing the hole from beginning compartment, a 500ml 

beaker was placed parallel to the ground in a way that only a 

tiny space next to the apparatus wall was available for the 

mice to enter inside the beaker and take the food kept inside 

the beaker. The test was done in two consecutive days and 

mice were fasted for 24 hours on both days of the study. In 

the first trial (training day), mice were put into the empty 

chamber and allowed 10 minutes to investigate the 

apparatus, cross the hole, and find their way to go inside the 

beaker by a narrow pathway to reach the food within the 

beaker. If a mouse did not reach the food after 10 minutes, it 

was excluded from the study. On the second trial (test day), 

mice were put identically to the first trial, and the time 

required to reach the food was measured. The shorter 

amount of time required to reach the food indicated 

enhanced memory or cognitive function. 

Morris Water Maze Test 

The water maze was formed on a pool with a diameter of 

approximately 6 feet and a depth of approximately 3 feet. 

The pool was filled with tap water and kept at 26 degrees 

Celsius. The escape platform was situated in the pool's 

middle which was submerged just beneath the surface of the 

water and was not visible to mice since milk has been added 

to make the water cloudy. The study involved two trials. The 

water maze included four possible beginning positions: 

north, south, east, or west. Animals were positioned in one of 

these places. Initially, the animals swum around the pool's 

perimeter in search of an exit. Eventually, the animal learnt 

to seek out and ascend to the platform. Once the mice 

reached the platform, they were expected to remain seated 

for 15 seconds. If it leaped off, it was gently led back to the 

platform. This taught the animal that in order to be retrieved 

from the pool, it must remain on the platform. For three 

trials, the identical technique was followed from four distinct 

directions, with each trial beginning in a different direction. 

Initially, mice were given 1 minute; if they failed, they were 

given an additional 1 minute; if they did not locate the 

platform within 3 minutes, they were excluded from the 

study. After the animals had completed all three tests, it was 

dried off with a towel. On the test day, each animal had 12 

trials, three for each beginning direction. The platform 

discovery or escape latency time was assessed and recorded 

[26]. 

Rotarod Test 

The rods were comprised of a strong plastic substance 

coated with a grey rubber foam. The diameter of the rotating 

rods was five centimeters. In 300 seconds, the equipment 

was permitted to accelerate from 4 rpm to 40 rpm. The 

rotarod's initial speed was 4 rpm, and its acceleration rate 

was 20 rpm/min. The mouse was held by its tail and put on 

the revolving rod with its back to the direction of rotation, 

requiring it to move forward to maintain its balance. The 

study consisted of three trials separated by 15-minute 

pauses (ITI). There was no training phase preceding the 

examination. The latency to fall, was measured manually 

[27]. 

Pole Test 

The apparatus was 50-centimeter-tall, 0.5-centimeter-

diameter, gauze-wrapped wooden pole topped with a 

wooden ball.  The mice were trained initially three times 

with the pole to ensure that all of them would tilt their heads 

down when placed on the ball. During the test, the duration 

it took for the mice to travel from the top to the bottom of the 

apparatus was measured. Each mouse had three trials with 
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5-minute intervals between each. For statistical analysis, the 

mean of the three trials was calculated [28]. 

Statistical Analysis  

All tests were statistically analyzed using a two-way ANOVA 

and Dunnett's multiple comparison test in GraphPad Prism 

8. All test findings were compared to a control group to 

determine their statistical significance. P values of 0.05, 0.01, 

and 0.001 were deemed statistically significant and denoted 

with the symbols *, **, and ***, respectively. 

RESULTS 

Y Maze Test 

The Y maze test was carried out to evaluate acute memory of 

the test animal (Figure 1A). In a 300 second duration of test, 

Blank group (non-Alzheimer’s mice) exhibited higher 

duration of time (~185s) spent in novel arm whereas, 

control (untreated Alzheimer’s mice) refrained itself from 

such exploration. Antioxidant exposure sufficiently 

increased the duration (137s) which was mimicked by 

Ketamine 10 mg/kg and eventually, synergized in their 

combination (157s). The synergy was though evident in 

other ketamine doses, could not produce a significant 

difference from its individual use. Moreover, despite 

ketamine’s initial dose dependent increase in total time 

spent in novel arm by 5 and 10 mg/kg, a higher dose of 20 

mg/kg drastically reduced the activity (22s). 

Modified Hole Cross Test 

The modified hole cross test was conducted to examine the 

spatial memory of mice. Data shows that mice treated with 

ketamine 20mg/kg alone had the most difficulty in locating 

food (132 seconds), followed by mice treated with ketamine 

20mg/kg and antioxidant (94 secs). In contrast, blank or 

non-Alzheimer’s mice were able to locate the food in 14.6 

seconds, followed by the antioxidant alone treated group in 

42 seconds, the ketamine 10mg/kg alone and the ketamine 

10mg/kg plus antioxidant treated group in 57 & 28 seconds 

respectively (Figure 1B). 

Morris Maze Test 

The Morris maze method was used to investigate the spatial 

and working memory of mice. The findings of the test (Figure 

1C) revealed that mice treated with ketamine 20mg/kg alone 

required the longest time to locate the platform (131s). On 

the contrary, antioxidant itself was highly effective (25s) in 

reducing the parameter. In addition, the antioxidant in its 

combination with such high dose of ketamine (20 mg/kg) 

also lowered the response synergistically (68.4s) however, 

was not significant enough to alter the loss of memory 

compared to control (54 seconds). Nevertheless, blank group 

of mice were able to locate the platform quickly (9.2 

seconds), followed by the combination of ketamine 10mg/kg 

and antioxidant-treated group (20 seconds) which was 

surprisingly more effective than the positive control itself.  

Rotarod Test 

The rotarod test was performed to observe the mice's motor 

coordination. Figure 2A depicts the results of the rotarod test 

for different treatment groups.  Data demonstrated that the 

ketamine 20mg/kg alone and ketamine 20mg/kg with 

antioxidant-treated groups of mice fell from the apparatus 

quickly (about 5.5 seconds). Nonetheless, blank mice were 

able to stay on the rotarod for longer duration (31 seconds), 

followed by the antioxidant alone and ketamine 10mg/kg 

combined with antioxidant treated group (around 15 

seconds).  

Pole Test 

Like Rotarod test, the pole test was used to analyze the motor 

coordination of mice. The results of the pole test for various 

treatment groups are displayed in Figure 2B, where it was 

evident that mice of combined ketamine 20 mg/kg and 

antioxidant therapy group had the longest time to descend 

from the pole (31.2 seconds). In addition, ketamine 20mg/kg 

alone-treated mice took the second-longest time, 24.5 

seconds. However, the blank group mice descended from the 

pole in 10 seconds, followed by antioxidant-only treated and 

antioxidant along with ketamine 10mg/kg treated animals in 

approximately 16 seconds which failed to demonstrates 

significant differences between the two groups. 

DISCUSSION 

Investigating the molecular mechanisms behind amyloid- 

and tau pathology has led to major advances in the 

knowledge of Alzheimer's disease over the past few decades. 

Hyperphosphorylation of certain amino acids in tau proteins 

leads it to detach from microtubules, disrupting the 

transport mechanism, eventually leading to starvation of 

neurons and cell death [29]. Moreover, formation of amyloid 

plaques, neurofibrillary tangles, synapse loss leading 

neuronal cell death, is caused by excessive levels of Aβ 

peptide in the brain [30]. Death of neurons in hippocampus 

causes memory loss and subsequent damage to the integrity 

of the gray matter of motor-related brain areas can lead to 

motor impairment [31]. 

NMDA receptor is another attributable component in the 

development of Alzheimer’s disease. Glutamate, a NMDA 

receptors ligand is an excitatory neurotransmitter for brain. 

Activation of NMDA receptors permits Ca2+ entrance in 

cytosol which causes synaptic plasticity [32]. However, over 

stimulation of the receptor leads to the loss of synaptic 

function and eventually causes death of neurons which is a 

cause of Alzheimer’s disease [33]. Moreover, it has been  
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Figure 1 (A-C): Comparative cognition with ketamine-based therapies in Alzheimer’s mice 

(Assessed in 1A: Y-maze test, 1B: Modified hole cross test and 1C: Morris maze test). 

BL = blank, CN = control, AO = antioxidant complex (betacarotene 1.2 mg/kg + vitamin-C 41 mg/kg + vitamin-E 10.3 mg/kg), K5/ K10/ 

K20 = ketamine at 5 mgkg-1/ 10 mgkg-1/ 20 mgkg-1 concentration, A + K5/ K10/ K20 = antioxidant complex + ketamine at 5 mgkg-

1/ 10 mgkg-1/ 20 mgkg-1 concentration. Data illustrated as mean ± SEM, (n=10); ns = non-significant, * = p <0.05, ** = p <0.01, *** = 

p <0.001; Dunnett’s multiple comparison test was performed, where 0.9% saline treated Alzheimer’s mice group served as control 

and all other groups were compared against the control.  All groups of mice except Blank were pre-treated with scopolamine (1mg/kg) 

for 7 days.
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suggested that NMDA reception activation triggers the 

production of amyloid plaques [34]. Ketamine is an NMDA 

receptor blocker but it causes cognitive damage in higher 

concentration as evident in the present study. This finding is 

in line with previous studies [20,21]. However, several other 

studies in animal model showed that ketamine higher dose 

do not cause neuronal damage [35].  

 

B
L

C
N

A
O K

5
K
10

K
20

A
+K

5

A
+K

10

A
+K

20

0

10

20

30

40

L
a

te
n

c
y
 t

im
e

 t
o

 f
a
ll

 (
in

 s
e
c

s
)

✱

✱

ns

ns

✱✱✱

✱✱✱

Blank

Control

Antioxidant

Ketamine 5 mg/kg

Ketamine 10 mg/kg

Ketamine 20 mg/kg

Antioxidant + Ketamine 5 mg/kg

Antioxidant + Ketamine 10 mg/kg

Antioxidant + Ketamine 20 mg/kg

ns

R
O

T
A

R
O

D
 T

E
S

T

 

B
L

C
N

A
O K

5
K
10

K
20

A
+K

5

A
+K

10

A
+K

20

0

10

20

30

40

T
im

e
 t

o
 d

e
s

c
e

n
d

 (
in

 s
e

c
s
)

✱

✱

ns

ns

✱✱✱

✱✱✱

Blank

Control

Antioxidant

Ketamine 5 mg/kg

Ketamine 10 mg/kg

Ketamine 20 mg/kg

Antioxidant + Ketamine 5 mg/kg

Antioxidant + Ketamine 10 mg/kg

Antioxidant + Ketamine 20 mg/kg

ns

P
O

L
E

 T
E

S
T

 

Figure 2 (A-B): Comparative motor coordination with ketamine-based therapies in Alzheimer’s mice 

(Assessed in 2A: Rotarod test and 2B: Pole test). 

BL = blank, CN = control, AO = antioxidant complex (betacarotene 1.2 mg/kg + vitamin-C 41 mg/kg + vitamin-E 10.3 mg/kg), K5/ K10/ 

K20 = ketamine at 5 mgkg-1/ 10 mgkg-1/ 20 mgkg-1 concentration, A + K5/ K10/ K20 = antioxidant complex + ketamine at 5 mgkg-

1/ 10 mgkg-1/ 20 mgkg-1 concentration. Data illustrated as mean ± SEM, (n=10); ns = non-significant, * = p <0.05, ** = p <0.01, *** = 

p <0.001; Dunnett’s multiple comparison test was performed, where 0.9% saline treated Alzheimer’s mice group served as control 

and all other groups were compared against the control.  All groups of mice except Blank were pre-treated with scopolamine (1mg/kg) 

for 7 days.  

Antioxidant has been one of the popular therapeutic choices 

to Alzheimer's patients. Antioxidants have been able to 

improve memory function as well as motor coordination in 

various studies[36,37]. Antioxidant complex usually 

contains carotenoids, vitamin C and E. Betacarotene protects 

tissues and cells from oxidative stress. Carotenoids are 

responsible for scavenging of reactive oxygen species [38]. 

Moreover, Carotenoids prevent cognitive decline and 

Alzheimer's disease progression [39]. Additionally, 

Cognitive and motor development favorably get influenced 

by dietary carotenoid n early childhood [40]. On the other 

hand, treating animal models of Alzheimer's disease with 

vitamin C could prevent the production of amyloid plaques 

[41]. Usually high vitamin C concentrations in blood are 

related with improved cognitive function and a reduced risk 

of cognitive impairment [42]. Vitamin E is an antioxidant that 

prevents protein alkylation and neutralizes free radicals 

[43]. Individuals with Alzheimer's disease have been found 

A 

B 
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to have lower vitamin E amounts in their blood. Decreased 

plasma levels have also been related with an increased 

chance of developing Alzheimer's disease [44]. 

Furthermore,   In animals with spinal cord damage, Vitamin 

C and vitamin E administration greatly enhanced motor 

function recovery and lack of dietary Vitamin C and vitamin 

E induces motor impairment [45]. 

This study aligns with the fact that low dose of ketamine 

(10mg/kg) blocks cognitive and motor coordination 

degradation. This finding is in line with findings of other 

studies which suggested that by reducing reactive oxygen 

species ketamine reduces oxidative stress and protect 

neuronal death [20,21,46]. In addition, some other studies 

proposed that it gives neuroprotection effect by activating 

mTOR and enhancing autophagy [47,48]. On the other hand, 

It was evident in this study that ketamine 20mg/kg dose was 

negatively impacting memory as well as disrupting   motor 

coordination in Alzheimer’s mice model. In high dose 

ketamine causes upregulation of NMDA receptor causing 

toxic accumulation of intracellular calcium following 

reactive oxygen species generation and apoptosis of neurons 

resulting in cognitive dysfunction [49]. Moreover, ketamine 

at higher dose causes dysfunction in afferent and neurons of 

the nucleus accumbens [50]. Nucleus accumbens acts as a 

bridge between limbic and motor systems. Thus, dysfunction 

at the nucleus accumbens results in motor failure [51]. The 

cause of such variation of activity due to dose difference is 

yet to be explored. Furthermore, it was observed that the 

combination of ketamine low dose especially 10mg/kg co-

administered with antioxidant ameliorated cognitive 

function than that of their individual use. Therefore, further 

studies are recommended to understand the mechanism for 

such synergy between ketamine and antioxidant. 

CONCLUSION 

Higher dose of ketamine cause degradation in cognitive and 

motor function. Nevertheless, lower dose of ketamine 

improved cognitive function of Alzheimer’s mice but could 

not enhance motor coordination. Yet the mechanism by 

which it produces neuroprotective effect is to be explored by 

further investigation at cellular and molecular level. In 

addition, how antioxidant and ketamine together give 

enhanced cognition effects compare to their individual use 

generates a new research focus.  
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